Skip to content

Event Transformations for JSON with JSONata

Introduction to JSONata

JSONata is a lightweight query and transformation language for JSON data. In Knative EventTransform, JSONata expressions allow you to:

  • Extract values from event data
  • Promote data fields to CloudEvent attributes
  • Restructure event payloads
  • Add computed values
  • Apply conditional logic

Basic Usage

To use JSONata in an EventTransform resource, specify the expression in the spec.jsonata.expression field:

apiVersion: eventing.knative.dev/v1alpha1
kind: EventTransform
metadata:
  name: simple-transform
spec:
  jsonata:
    expression: |
      {
        "specversion": "1.0",
        "id": id,
        "time": time,
        "type": "transformed.type",
        "source": "transform.simple",
        "data": data
      }

CloudEvent Structure

The input to the JSONata expression is the entire CloudEvent, including all its attributes and data. Your expression must produce a valid CloudEvent with at least these required fields:

  • specversion: Should be set to "1.0"
  • id: A unique identifier for the event
  • type: The event type
  • source: The event source
  • data: The event payload

Common Transformation Patterns

Preserving Original Event Structure

To preserve the original event structure while adding or modifying attributes:

{
  "specversion": "1.0",
  "id": id,
  "type": type,
  "source": source,
  "time": time,
  "data": data,
  "newattribute": "static value"
}

Extracting Fields as Attributes

To extract fields from the data and promote them to CloudEvent attributes:

{
  "specversion": "1.0",
  "id": id,
  "type": "user.event",
  "source": source,
  "time": time,
  "userid": data.user.id,
  "region": data.region,
  "data": $
}

The $ symbol in JSONata represents the entire input object, so data: $ preserves the entire original event data.

Restructuring Event Data

To completely reshape the event data:

{
  "specversion": "1.0",
  "id": order.id,
  "type": "order.transformed",
  "source": "transform.order-processor",
  "time": order.time,
  "orderid": order.id,
  "data": {
    "customer": {
      "id": order.user.id,
      "name": order.user.name
    },
    "items": order.items.{ "sku": sku, "quantity": qty, "price": price },
    "total": $sum(order.items.(price * qty))
  }
}

Given the transformation above, and this JSON object as input:

{
  "order": {
    "time" : "2024-04-05T17:31:05Z",
    "id": "8a76992e-cbe2-4dbe-96c0-7a951077089d",
    "user": {
      "id": "bd9779ef-cba5-4ad0-b89b-e23913f0a7a7",
      "name": "John Doe"
    },
    "items": [
      {"sku": "KNATIVE-1", "price": 99.99, "qty": 1},
      {"sku": "KNATIVE-2", "price": 129.99, "qty": 2}
    ]
  }
}

It would produce:

{
  "specversion": "1.0",
  "id": "8a76992e-cbe2-4dbe-96c0-7a951077089d",
  "type": "order.transformed",
  "source": "transform.order-processor",
  "time": "2024-04-05T17:31:05Z",
  "orderid": "8a76992e-cbe2-4dbe-96c0-7a951077089d",
  "data": {
    "customer": {
      "id": "bd9779ef-cba5-4ad0-b89b-e23913f0a7a7",
      "name": "John Doe"
    },
    "items": [
      {
        "sku": "KNATIVE-1",
        "quantity": 1,
        "price": 99.99
      },
      {
        "sku": "KNATIVE-2",
        "quantity": 2,
        "price": 129.99
      }
    ],
    "total": 359.97
  }
}

Conditional Transformations

To apply different transformations based on conditions:

{
  "specversion": "1.0",
  "id": id,
  "type": type = "order.created" ? "new.order" : "updated.order",
  "source": source,
  "time": time,
  "priority": data.total > 1000 ? "high" : "normal",
  "data": $
}

Advanced JSONata Features

Array Processing

JSONata makes it easy to process arrays in your event data:

{
  "specversion": "1.0",
  "id": id,
  "type": "order.processed",
  "source": source,
  "time": $now(),
  "itemcount": $count(order.items),
  "multiorder": $count(order.items) > 1,
  "data": {
    "order": order.id,
    "items": order.items[quantity > 1].{
      "product": name,
      "quantity": quantity,
      "lineTotal": price * quantity
    },
    "totalvalue": $sum(order.items.(price * quantity))
  }
}

Given the transformation above, and this JSON object as input:

{
  "id": "12345",
  "source": "https://example.com/orders",
  "order": {
    "id": "order-67890",
    "items": [
      {
        "name": "Laptop",
        "price": 1000,
        "quantity": 1
      },
      {
        "name": "Mouse",
        "price": 50,
        "quantity": 2
      },
      {
        "name": "Keyboard",
        "price": 80,
        "quantity": 3
      }
    ]
  }
}

It would produce:

{
  "specversion": "1.0",
  "id": "12345",
  "type": "order.processed",
  "source": "https://example.com/orders",
  "time": "2025-03-03T09:13:23.753Z",
  "itemcount": 3,
  "multiorder": true,
  "data": {
    "order": "order-67890",
    "items": [
      {
        "product": "Mouse",
        "quantity": 2,
        "lineTotal": 100
      },
      {
        "product": "Keyboard",
        "quantity": 3,
        "lineTotal": 240
      }
    ],
    "totalvalue": 1340
  }
}

Using Built-in Functions

JSONata provides many useful functions:

{
  "specversion": "1.0",
  "id": id,
  "type": "user.event",
  "source": source,
  "time": time,
  "timestamp": $now(),
  "username": $lowercase(data.user.name),
  "initials": $join($map($split(data.user.name, " "), function($v) { $substring($v, 0, 1) }), ""),
  "data": $
}

Transforming Replies

When using the EventTransform with a sink, you can also transform the responses:

apiVersion: eventing.knative.dev/v1alpha1
kind: EventTransform
metadata:
  name: request-reply-transform
spec:
  sink:
    ref:
      apiVersion: serving.knative.dev/v1
      kind: Service
      name: processor-service
  jsonata:
    expression: |
      # Request transformation
      {
        "specversion": "1.0",
        "id": id,
        "type": "request.transformed",
        "source": source,
        "time": time,
        "data": data
      }
  reply:
    jsonata:
      expression: |
        # Reply transformation
        {
          "specversion": "1.0",
          "id": id,
          "type": "reply.transformed",
          "source": "transform.reply-processor",
          "time": time,
          "data": data
        }

Best Practices

  1. Always produce valid CloudEvents: Ensure your expressions include all required CloudEvent fields.

  2. Test expressions thoroughly: Use the JSONata Exerciser to validate complex expressions.

  3. Keep expressions readable: Use line breaks and indentation in your YAML to make expressions easier to read and maintain.

  4. Handle missing data: Use the ? operator to provide default values for potentially missing fields.

  5. Avoid infinite loops: When using the reply feature with a Broker, make sure to change the event type or add filters to prevent infinite loops.

Examples

User Registration Event Transformer

apiVersion: eventing.knative.dev/v1alpha1
kind: EventTransform
metadata:
  name: user-registration-transformer
spec:
  sink:
    ref:
      apiVersion: eventing.knative.dev/v1
      kind: Broker
      name: default
  jsonata:
    expression: |
      {
        "specversion": "1.0",
        "id": id,
        "type": "user.registered.processed",
        "source": "transform.user-processor",
        "time": time,
        "userid": data.user.id,
        "region": data.region ? data.region : "unknown",
        "tier": data.subscription.tier ? data.subscription.tier : "free",
        "data": {
          "userId": data.user.id,
          "email": $lowercase(data.user.email),
          "displayName": data.user.name ? data.user.name : $substring(data.user.email, 0, $indexOf(data.user.email, "@")),
          "registrationDate": $now(),
          "subscription": data.subscription ? data.subscription : { "tier": "free" }
        }
      }

Order Processing Event Transformer

apiVersion: eventing.knative.dev/v1alpha1
kind: EventTransform
metadata:
  name: order-processor
spec:
  jsonata:
    expression: |
      {
        "specversion": "1.0",
        "id": id,
        "type": "order.processed",
        "source": "transform.order-processor",
        "time": time,
        "orderid": data.id,
        "customerid": data.customer.id,
        "region": data.region,
        "priority": $sum(data.items.(price * quantity)) > 1000 ? "high" : "standard",
        "data": {
          "orderId": data.id,
          "customer": data.customer,
          "items": data.items.{
            "productId": productId,
            "name": name,
            "quantity": quantity,
            "unitPrice": price,
            "totalPrice": price * quantity
          },
          "total": $sum(data.items.(price * quantity)),
          "tax": $sum(data.items.(price * quantity)) * 0.1,
          "grandTotal": $sum(data.items.(price * quantity)) * 1.1,
          "created": data.created,
          "processed": $now()
        }
      }

Further Resources

We use analytics and cookies to understand site traffic. Information about your use of our site is shared with Google for that purpose. Learn more.

× OK